Все описания как была нейдена масса Земли очень короткие. Якобы Кавендиш вычислил гравитационную постоянную по формуле Ньютона, и из этой же формулы получил массу Земли…
Формула Ньютона: F = gMm/r^2, где F сила взаимодействия, g – гравитационная постоянная, M и m – массы взаимодействующих тел, r – расстояние между ними. В формуле Ньютона массы двух тел связанных гравитацией перемножаются. Как можно понять, что представляет собой величина, полученная в результате этого умножения? Реально эта формула не соответствует ничему. Она просто измышление больного ума и ничего на её основании измерять нельзя. Умножать можно только именованное число на отвлеченное, так как умножить величину значит взять ее слагаемые несколько раз и найти сумму. Есть множество примеров наблюдений в мире галактик демонстрирующих их несоответствие фориуле Ньютна.
А вот хорошее, с нужной долей юмора, описание порцесса получения Кавендишем гравитационной постоянной для формулы Ньютона:
-Кавендиш использовал крутильные весы – это горизонтальное коромысло, с двумя грузиками на концах, подвешенное за свой центр на тонкой струне и тщательно сбалансированное. Коромысло может поворачиваться в горизонтальной плоскости, закручивая упругий подвес – в ту или иную сторону – поэтому существует равновесное положение коромысла. Как пишут в популярных изданиях, Кавендиш приблизил к грузикам коромысла пару болванок – с противоположных сторон – и коромысло повернулось на небольшой угол, при котором момент сил притяжения грузиков к болванкам уравновесился упругой реакцией подвеса на кручение.
Это шутка, конечно. Если всё было так просто, то отчего бы лабораторную установку, сделанную по схеме Кавендиша, не иметь в каждой общеобразовательной школе? Пусть уже ребятишки знали бы на опыте, что камешки для рогатки притягиваются не только к Земле, но и друг к другу. Что мешает ребятишкам прикоснуться к фундаментальному эксперименту? Может, Кавендиш использовал какие-то высокотехнологические секреты? Да нет, его установка (XVII век) не мудренее, чем современные коромысловые аналитические весы, которые есть, наверное, в каждой химической лаборатории. Может, требуются технические нюансы установки Кавендиша? Тоже нет проблем: сгоняйте в Англию и посетите музей, где эта установка хранится. Вот коромыслице, вот подвешены на медных стержнях свинцовые чушки: покрутишь вон тот блок, чушки переместятся, приблизятся к грузикам – и притягивать начнут. И всё оно сделано скромненько, в деревянном корпусе. Смотрите, перенимайте! Всё лучшее – детям! А, может, иметь в каждой школе деревянный ящик с немагнитными болванками на стержнях и струнках – это слишком разорительно? Ну, хорошо, пусть бы такие ящики были хотя бы на физических факультетах вузов! Пусть студенты делали бы лабораторные работы, после которых на всю жизнь знали бы точно, что две болваночки друг друга притягивают, притягивают, притягивают!
Но нет таких полезных ящиков даже в вузах. Похоже, обнаруживать притяжение двух болваночек – это не студенческого ума дело. Студенты результат Кавендиша проверяли бы, а его подтверждать надо. Такое ответственное дело требует особых навыков, и за него непозволительно браться абы кому. А в особенности – доморощенным умельцам! Если у этих талантов-самородков зудит в одном месте, пусть на здоровье пытаются повторить опыт Майкельсона-Морли – там, действительно, свет клином сошёлся. А досточтимого сэра Кавендиша пусть не трогают!
Да почему же? А потому что тронь – и сразу выяснится, что дело-то было вовсе не в гравитационном притяжении грузиков к болванкам. Есть веские основания полагать, что “секрет успеха” Кавендиша был обусловлен микровибрациями, действие которых на механические системы потрясающее – и в прямом, и в переносном смыслах. Откуда досточтимый сэр мог знать, что его крутильные весы под воздействием микровибраций ведут себя существенно иначе, чем при отсутствии оных? Чтобы понять, в чём заключается эта разница, следует иметь в виду, что высокочувствительную колебательную систему трудно успокоить: она совершает свободные колебания, у которых период длинный, да и затухают они очень медленно. Замучаешься ждать, пока они совсем затухнут. А малейший микросейсм – чихнёт экспериментатор или пукнет – и опять всё сначала. Но Кавендиш и не ждал, когда колебания затухнут. Идея заключалась в том, что среднее положение при колебаниях должно было сместиться к болванкам после того, как их передвинут из дальней позиции в ближнюю. Но, пусть пока эти болванки находятся в дальней позиции. Смотрите внимательно, что произойдёт, если, при прохождении коромыслом среднего положения, “включить” микровибрации – например, у кронштейна, к которому прикреплён подвес коромысла. Под действием микровибраций, эффективная жёсткость подвеса уменьшается: струна как бы размягчается. И произойдёт вот что: коромысло отклонится от среднего положения на существенно большую величину, чем оно отклонялось при свободных колебаниях без микровибраций. И если это увеличенное отклонение не превысит некоторую критическую величину, то будет возможен ещё один впечатляющий эффект. А именно: если микровибрации отключатся или затухнут до того, как коромысло дойдёт до максимального отклонения, то возобновятся свободные колебания с прежней амплитудой, но с соответственно смещённым средним положением! Причём, этот эффект будет обратим: новым “включением” микровибраций – в подходящий момент – можно будет вернуть колебания к их исходному среднему положению! Таким образом, имевшее место поведение крутильных весов вполне могло быть обусловлено всего лишь подходящим добавлением микровибраций к крутильным колебаниям коромысла. Причём, судя по использованной Кавендишем методике, микровибрации он добавлял весьма подходяще.
Надо, всё-таки, сказать, откуда же они брались. Это совсем просто. Кронштейн, к которому была подвешена чувствительная крутильная система, был приделан к боковой стене того же самого деревянного корпуса, к крыше которого крепилась поворотная подвеска двух болванок – по 158 килограммов каждая. Как ни смазывай поворотную подвеску свиным или гусиным жиром – в процессе изменения позиции болванок весь корпус будет скрипеть и подрагивать. И, соответственно, подёргивать кронштейн с крутильной системой. Запомним: каждое перемещение болванок – это возбуждение микровибраций.
А теперь – самое интересное: когда эти болванки перемещать. Пусть вначале они находятся в дальней позиции. Если ожидается, что, в результате их перемещения в ближнюю позицию, коромысло довернётся к новому среднему положению, то спрашивается: когда следует делать смену позиций, чтобы доворот коромысла проявился в наиболее чистом виде? Правильно: когда коромысло проходит нынешнее среднее положение и движется в сторону ожидаемого доворота. Так и делалось. И – понеслось оно, вибрирующее коромысло, в нужную сторону! Можно возразить – далеко оно не уйдёт, ведь микровибрации довольно быстро затухнут. Это действительно так. Но Кавендиш не ограничивался единственной сменой позиции болванок! Вот цитата из его статьи: “…в этом опыте притяжение грузов отклоняло коромысло с деления 11.5 до деления 25.8 [это средние положения], так что если бы не было предпринято никаких мер, то импульс, приобретённый при этом, перенёс бы коромысло к делению 40 и поэтому заставил бы шарики удариться о кожух. Чтобы предотвратить этот удар, после того, как коромысло приближалось к делению 15, я возвращал грузы в среднюю [дальнюю] позицию и оставлял их там до того момента, когда коромысло подходило близко к крайней точке своего колебания, и тогда снова сдвигал грузы в положительную [ближнюю] позицию”. Здесь для нас важно не объяснение Кавендиша, почему он так делал (странное оно, это объяснение) – для нас важно то, что он делал. Смотрите, как здорово получалось: вскоре после начала движения коромысла к новому среднему положению, второй раз возбуждались микровибрации – возвратом болванок в дальнюю позицию. Эти два “включения” микровибраций и давали результирующее новое среднее положение коромысла. При третьем перемещении болванок – вновь в ближнюю позицию – микровибрации пропадали впустую, поскольку это перемещение делалось при крайнем отклонении коромысла, т.е. при нулевой скорости его движения. В итоге этой нехитрой трёхходовой комбинации оказывалось, что болванки находятся в ближней позиции, а коромысло колеблется, довернувшись к ним – как будто и впрямь из-за гравитационного притяжения. Да только сторонники концепции притяжения лабораторных болваночек не объяснят вам, какая же нечистая сила несла коромысло аж три четверти пути к новому среднему положению – в то время, когда болванки находились в дальней позиции и, по логике эксперимента, “не притягивали”. А ведь смещение к новому среднему положению превышало амплитуду свободных колебаний в семь раз!
Остаётся добавить, что по совершенно аналогичной трёхходовой методе производился и возврат коромысла в прежнее среднее положение. Ловкость рук и никакого мошенничества!
——-
В действительности Кавендиш предварительно прикинул массу Земли, полагая, что её средняя плотность равна 6, а потом уже мудрил с формулой Ньютона. Еще надо знать, что во множестве экспериментов по вычислению гравитационной постоянной эта “постоянная” получалась РАЗНАЯ! То есть, изменение гравитации с расстоянием формула Ньютона явно не отражает… Впрочем, проблема не в том какая масса Земли, а в том, что из формулы Ньютона через массу Земли вычисляют массы планет, Солнца, и далее звёзд и галактик… Получается полная ерунда, “темная материя” до и только…