После проведённого Полем девять лет назад измерения мюонного водорода команда физиков во главе с Эриком Хассельсом из Йоркского университета в Торонто решила заново измерить протон в обычном, «электронном» водороде. В конце концов, это удалось: Хессельс и его коллеги установили, что протон имеет радиус 0,833 фемтометра плюс-минус 0,01 — результат, точно соответствующий полученному Полем. По сравнению с обоими этими измерениями, точность ранее проведённых измерений ниже, и это вынуждает сделать вывод, что протон не меняет свой размер в зависимости от контекста исследований; скорее, всё дело в ущербности старых измерений с использованием электронного водорода.
Исследование радиуса протона не было рутинной работой. Чтобы определить его значение, Хессельсу и его коллегам пришлось измерять лэмбовский сдвиг — разницу между первым и вторым уровнями энергии возбуждённого водорода, которые называют состояниями 2S и 2P. Как вспоминает Хессельс, желание провести измерение лэмбовского сдвига появилось у него ещё в 80-х годах ХХ века, когда он был студентом, и, наконец, благодаря загадке радиуса протона у него появился стимул. «Это чрезвычайно сложное измерение, — подчеркнул он, — и, чтобы им заняться, нужна была веская причина».
Каким образом лэмбовский сдвиг, получивший название в честь американского физика Уиллиса Лэмба (Willis Lamb), который первым попытался измерить его в 1947 году, позволяет определить радиус протона? Вращаясь в состоянии 2S вокруг ядра атома водорода, электрон часть своего времени проводит внутри протона (а это — сгусток частиц, называемых кварками и глюонами, с большим количеством пустого пространства). Когда электрон находится внутри протона, тот благодаря своему положительному заряду растягивает электрон в противоположных направлениях, частично теряя свою силу. В результате величина электрического притяжения между протоном и электроном становится меньше, уменьшая энергию, которая обеспечивает целостность атома. Чем больше протон, тем больше времени электрон находится внутри него и тем слабее связан с ним, а значит, тем легче отскакивает.
Пустив луч лазера в облако газообразного водорода, Хессельс и его команда заставили электроны перейти из состояния 2S в состояние 2P, при котором электрон никогда не перекрывает протон. Определение энергии, необходимой электрону для совершения такого перехода, показало, насколько слабо он связан в состоянии 2S, когда частично попадает внутрь протона. А это прямо говорит о размере последнего.
В 2010 году Поль действовал похожим образом, определяя радиус протона с помощью лэмбовского сдвига мюонного водорода. Но поскольку мюон тяжелее электрона, в состоянии 2S он прижимается к протону плотнее. Это означает, что он дольше находится внутри протона, делая лэмбовский сдвиг в мюонном водороде в несколько миллионов раз более чувствительным к радиусу протона, чем в нормальном водороде.
Работавшему с нормальным водородом, Хессельсу, чтобы выяснить точное значение радиуса протона, пришлось измерять разность энергий между 2S и 2P с точностью до миллионных долей.
Согласно результату, полученному Хессельсом, в ходе более ранних попыток измерить радиус протона в электронном водороде проявилась тенденция завышать истинное значение. Почему — неясно.
Источник: https://www.quantamagazine.org/physicists-finally-nail-the-protons-size-and-hope-dies-20190911
А за 9 лет на базе этой ошибки как бы учёные уже нагородили кучу теорий “новой физики”, таков уж их обычай…
А вот фотография атома водорода и его (ядро) протон соизмерим с орбиталью электрона….
Группа ученых из Германии, Греции, Нидерландов, США и Франции получила снимки атома водорода. На этих изображениях, полученных при помощи фотоионизационного микроскопа, видно распределение электронной плотности, которое полностью совпадает с результатами теоретических расчетов. Работа международной группы представлена на страницах Physical Review Letters.
Суть фотоионизационного метода заключается в последовательной ионизации атомов водорода, то есть в отрывании от них электрона за счет электромагнитного облучения. Отделившиеся электроны направляются на чувствительную матрицу через положительно заряженное кольцо, причем положение электрона в момент столкновения с матрицей отражает положение электрона в момент ионизации атома. Заряженное кольцо, отклоняющее электроны в сторону, играет роль линзы и с его помощью изображение увеличивается в миллионы раз.
Этот метод, описанный в 2004 году, уже применялся для получения «фотографий» отдельных молекул, однако физики пошли дальше и использовали фотоионизационный микроскоп для исследования атомов водорода. Так как попадание одного электрона дает всего одну точку, исследователи накопили около 20 тысяч отдельных электронов от разных атомов и составили усредненное изображение электронных оболочек.
В соответствии с законами квантовой механики, электрон в атоме не имеет какого-то определенного положения сам по себе. Лишь при взаимодействии атома с внешней средой электрон с той или иной вероятностью проявляется в некоторой окрестности ядра атома: область, в которой вероятность обнаружения электрона максимальна, называется электронной оболочкой. На новых изображениях видны различия между атомами разных энергетических состояний; ученые смогли наглядно продемонстрировать форму предсказанных квантовой механикой электронных оболочек.
При помощи других приборов, сканирующих туннельных микроскопов, отдельные атомы можно не только увидеть, но и переместить в нужное место. Эта техника около месяца назад позволила инженерам компании IBM нарисовать мультфильм, каждый кадр которого сложен из атомов: подобные художественные эксперименты не имеют какого-то практического эффекта, но демонстрируют принципиальную возможность манипуляций с атомами. В прикладных целях используется уже не поатомная сборка, а химические процессы с самоорганизацией наноструктур или самоограничением роста одноатомных слоев на подложке.
Источник: lenta.ru
Атом водорода — физико-химическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра как правило входит протон или протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон преимущественно находится в тонком концентрическом шаровом слое вокруг атомного ядра, образуя электронную оболочку атома. Наиболее вероятный радиус электронной оболочки атома водорода в стабильном состоянии равен боровскому радиусу a Атом водорода имеет специальное значение в квантовой механике и релятивистской квантовой механике, поскольку для него проблема двух тел имеет точное или приближенное аналитическое решение. Эти решения применимы для разных изотопов водорода, с соответствующей коррекцией.