Конец водопроводам… Есть технология получения питьевой воды из воздуха!

Тестирование прототипа устройства для получения воды из воздуха с помощью новой супергигроскопичной полимерной пленки / © Youhong Guo et al., Nature Communications, 2022

Инженеры из Техасского университета (США) разработали технологию получения воды при помощи сверхгигроскопичных полимерных пленок. В работе, опубликованной в журнале Nature Communications, они описывают разработку гелевой супергигроскопичной полимерной пленки, способной вытягивать воду из воздуха. С помощью одного килограмма пленки можно собирать до 5,8 литра воды в день в районах с относительной влажностью менее 15% и до 13,3 литра — в районах с относительной влажностью до 30%. 

Ключевые этапы технологии сбора воды из воздуха (а). Географическое распределение среднегодовой относительной влажности в мире (b). Структура и механизм работы сверхгигроскопичных полимерных пленок (SHPF) (c) / © Youhong Guo et al., Nature Communications, 2022
Ключевые этапы технологии сбора воды из воздуха (а). Географическое распределение среднегодовой относительной влажности в мире (b). Структура и механизм работы сверхгигроскопичных полимерных пленок (SHPF) (c) / © Youhong Guo et al., Nature Communications, 2022

Для создания гигроскопичной полимерной матрицы (скелета пленки) исследователи взяли гидроксипропилцеллюлозу и конжаковую камедь — две пищевые добавки, используемые как загустители и стабилизаторы. При смешении они создавали пористую структуру пленки, ускоряющую процесс захвата атмосферной влаги. В порах пленки однородно распределялся третий компонент — гигроскопичная соль LiCl, позволяющая эффективно поглощать атмосферную воду даже при низкой относительной влажности. 

Наличие в составе пленки термочувствительной целлюлозы (гидроксипропилцеллюлозы), которая становится гидрофобной (избегает контакта с молекулами воды) при нагревании, обеспечивает контролируемое высвобождение собранной пленкой влаги в течение 10 минут. При этом, средняя эффективность водосбора (т.е. отношение количества собираемой воды к количеству атмосферной влаги, поглощенной установкой) достигает 87%. 

Конструктивная схема (а) и фотография водосборного устройства (b). Врезка: фотографии капель конденсированной воды (вверху) и увеличенный образец (внизу). Масштабная линейка: 1 см / © Youhong Guo et al., Nature Communications, 2022
Конструктивная схема (а) и фотография водосборного устройства (b). Врезка: фотографии капель конденсированной воды (вверху) и увеличенный образец (внизу). Масштабная линейка: 1 см / © Youhong Guo et al., Nature Communications, 2022

Схема работы устройства на основе сверхгигроскопичной полимерной пленки получается весьма простой и изящной: при прохождении влажного воздуха через поры пленки, она насыщается атмосферной влагой из-за своей гигроскопичности (во многом благодаря соли LiCl) и увеличивается в размерах, накапливая воду в полимерной сети. Затем пленку нагревают до 60 °C, чтобы гидроксипропилцеллюлоза стала гидрофобной и чтобы выпарить накопленную в пленке воду, которая затем конденсируется на конденсере, собирается в коллекторе и уводится из системы.

Благодаря этому общие затраты энергии на сбор воды из воздуха сводятся к минимуму, особенно в сравнении с похожими, но энергоемкими и малоэффективными известными технологиями. Кроме того, по словам исследователей, поскольку сама реакция проста, это помогает избегать проблем, связанных с ее масштабированием и массовым применением. 

Схема изготовления сверхгигроскопичной полимерной пленки (SHPF) методом литья (a). Фотография образца SHPF (b). Масштабная линейка: 2 сантиметра. Фотографии пленок различной формы и толщины (с). Масштабная линейка: 1 сантиметр. Изображения пленки, полученные на сканирующем электронном микроскопе (d, e). Масштабная линейка: 200 микрометров. / © Youhong Guo et al., Nature Communications, 2022
Схема изготовления сверхгигроскопичной полимерной пленки (SHPF) методом литья (a). Фотография образца SHPF (b). Масштабная линейка: 2 сантиметра. Фотографии пленок различной формы и толщины (с). Масштабная линейка: 1 сантиметр. Изображения пленки, полученные на сканирующем электронном микроскопе (d, e). Масштабная линейка: 200 микрометров. / © Youhong Guo et al., Nature Communications, 2022

Супергигроскопичная пленка получается гибкой и может принимать различные формы и размеры в зависимости от потребностей пользователя. Для ее изготовления требуется только смешать все необходимые ингредиенты, залить смесь в форму и высушить замораживанием, после чего пленку можно сразу использовать.

naked-science

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Solve : *
23 − 4 =