Большое открытие в генетике: активация генов в ДНК осуществляется не чётко, а приблизительно!

Ученый Научно-технологического университета “Сириус” и Московского физико-технического института Максим Никитин открыл новый фундаментальный механизм хранения информации в ДНК.

Его исследование доказывает, что механизм, которым руководствовались ученые последние 70 лет, якобы ДНК хранит и обрабатывает информацию за счет структуры двойной спирали – однозначно соответствующих друг другу (комплементарных) молекулярных цепей, был очень неполным. Открытие Никитина стало прорывным в мире науки.

Важность и значимость открытия подчеркивает тот факт, что исследования Максима Никитина опубликованы в одном из самых авторитетных научных журналов мира Nature Chemistry. Российский ученый стал единственным автором статьи, что в подобных изданиях встречается крайне редко.

Максим Никитин экспериментально доказал, что ДНК может хранить и передавать информацию за счет слабоаффинных взаимодействий. Также он показал, что короткая ДНК может регулировать работу гена, даже если не комплементарна ему.

Новое природное явление автор феномена назвал “молекулярной коммутацией”. Суть его в том, что информация переносится при взаимодействии коротких одноцепочечных молекул ДНК/РНК или других молекул. В смеси, которая состоит из коротких одноцепочечных и некомплементарных друг другу олигонуклеотивод, одновременно будут сосуществовать самые различные их комплексы. Варианты этих взаимодействий определяются “сродством” молекул и в общем случае описываются открытым еще в XIX веке законом действующих масс о зависимости скорости реакции от концентрации участвующих веществ. При этом такие комплексы будут связаны друг с другом и передавать информацию между собой, даже если какие-то два олигонуклеотида не связываются друг с другом напрямую.

Открытие Максима Никитина позволяет экспериментально доказать факт, который не укладывается в парадигму современной биологии: любая неструктурированная одноцепочечная ДНК может специфично регулировать экспрессию заданного гена безотносительно их комплементарности. Все зависит от наличия в организме других некомплементарных олигонуклеотидов. Кроме того, автор показал, что новое явление позволяет лучше управлять экспрессией генов.

Если в рамках обычной парадигмы комплементарный механизм регуляции допускает около 1012 вариантов регулирования генов, то Максим Никитин показал, что при использовании тех же 20-нуклеотидных последовательностей, можно реализовать не менее 10172 вариаций регуляции деятельности гена. Это в значительной степени превосходит число элементарных частиц во Вселенной, которых “всего” 1080!

Чтобы доказать, что ДНК хромосом может образовывать связи с практически любыми очень слабо комплементарнвми ей короткими ДНК, Максим Никитин показывает экспериментальную реализацию большого разнообразия систем, которые по-разному обрабатывают информацию, начиная с систем, включающих всего три суперкоротких олигонуклеотида длиной в семь азотистых оснований, до ячеек памяти, систем вычисления квадратного корня.

При этом компьютерное моделирование явления коммутации продемонстрировало устойчивую обработку информации и системой, состоящей из 1 000 олигонуклеотидов. Это позволяет создать 572-битную ячейку обработки информации, что превосходит битность всех существующих электронных компьютеров. Примечательно, что предложенная Никитиным модель концептуально вообще не имеет ограничения по числу взаимодействующих таким образом олигонуклеотидов.

“Я обратил внимание на необычное свойство ДНК, которое ровно 70 лет оставалось незамеченным – в тени красоты двойной спирали. А именно на то, что для любой одноцепочечной ДНК (оцДНК) существует великое множество других оцДНК с практически любой наперед заданной аффинностью (сродственностью) – свойство, которое я назвал континуумом аффинностей ДНК, – рассказывает Максим Никитин. – Например, возьмем олигонуклеотид из десяти оснований. Тогда полностью комплементарный ему олигонуклеотид будет иметь максимальную силу сродства – аффинность. Если же начать постепенно заменять во втором олигонуклеотиде азотистые основания на произвольные, то их аффинность первому будет падать. При этом, перебирая все варианты оцДНК из десяти букв, для каждой аффинности мы получим множество вариантов, то есть плотный “континуум аффинностей””.

Это открытие стало прорывным в мире науки. Фундаментальный феномен позволит ученым познать природу самых разнообразных процессов, начиная от сложных заболеваний, тайн генетики, мгновенной памяти и старения до вопросов возникновения жизни на Земле и ее эволюции.

Необходимо отметить, что в молекулярной коммутации способны участвовать не только нуклеиновые кислоты. Белки и малые молекулы также могут взаимодействовать по этому принципу, но предсказать их взаимные аффинности в настоящее время еще невозмжно.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Solve : *
22 ⁄ 11 =