Абсолютно чёрное тело вызывает притяжение.

Действие силы чёрного тела в представлении художника (иллюстрация M. Sonnleitner, et al./American Physical Society).

Действие силы чёрного тела
(иллюстрация M. Sonnleitner, et al./American Physical Society).

 

Абсолютно чёрное тело — физическое тело, которое при любой температуре поглощает всё падающее на него электромагнитное излучение во всех диапазонах. Таким образом, для абсолютно чёрного тела поглощательная способность (отношение поглощённой энергии к энергии падающего излучения) равна 1 при излучениях всех частот, направлений распространения и поляризаций.

Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Этот объект является физической идеализацией, то есть в природе такого объекта не существует. Однако, несомненно, есть тела, обладающие подобными свойствами в большей или меньшей степени. Более того, вопреки интуитивным представлениям, примером абсолютно чёрного тела может послужить Солнце.

Несмотря на то, что свойства излучения чёрного тела зависят от его температуры, учёные всегда полагали, что его излучение будет производить отталкивающий эффект. Но недавно команде австрийских физиков удалось теоретически доказать, что излучение такого объекта индуцирует вторую силу, действующую на близлежащие атомы и молекулы. Под воздействием этой силы частицы притягиваются к чёрному телу, притом, на удивление учёных, в некоторых случаях даже сильнее, чем при воздействии гравитации. Этот эффект, получивший название “силы чёрного тела” (blackbody force), способен объяснить ряд загадочных астрофизических явлений.

Эффекты, лежащие в основе силы чёрного тела, были известны учёным уже с полвека. Излучение увеличивает энергию близлежащих атомов и молекул, что известно как эффект Штарка. В такой ситуации основное состояние частиц изменяется в сторону более низких энергий, пропорционально четвёртой степени (биквадрату) температуры абсолютно чёрного тела. То есть чем теплее тело, тем сильнее смещение.

Потенциальные последствия таких “сдвигов” энергии атомов или молекул ранее не оценивалось. Зато стало предметом повторного теоретического исследования. В своём последнем исследовании австрийцы показали, что смещения, вызванные излучением абсолютно чёрного тела и эффектом Штарка, могут совмещаться и производить в итоге притягивающую силу. То есть итоговая сила превосходит отталкивающее действие всё того же излучения.

Выходит, что горячая сфера конечной величины способна в большинстве случаев притягивать, а не отталкивать близлежащие нейтральные атомы и молекулы.

“Важнее всего то, что мы доказали, что сила, которую обычно ассоциируют с лабораторными лазерами и другими мощными источниками излучения, существует также у любого источника теплового излучения. Взаимодействие между притягивающей силой и отталкивающим давлением излучения очень важно для работы квантовой оптики, но мы выяснили, что этот эффект возникает и в источниках теплового излучения”, — рассказывает соавтор исследования Маттиас Зонлайтнер (Matthias Sonnleitner) из университета Инсбрука.

Как объясняют учёные, притяжение возникает вследствие того, что атомы и молекулы, чьё состояние смещено в сторону более низких энергий, тянутся к источнику более интенсивного излучения — в данном случае, к абсолютно чёрному телу. После того, как такую силу притяжения измерили, физики пришли к некоторым очень интересным выводам.

Во-первых, её действие уменьшается по мере удаления от объекта (пропорционально третьей степени дистанции). Во-вторых, она обратно пропорциональна размеру объекта (чем он меньше, тем сила больше). А в-третьих, сила чёрного тела прямо пропорциональна его температуре, то есть чем горячее источник, тем больше будет сила. Правда, до определённой степени. Если температура превышает несколько тысяч градусов по Цельсию, то притяжение сменяется отталкиванием.

Модель абсолютно чёрного тела (иллюстрация Wikimedia Commons).

В рамках своего исследования Зонлайтнер и его коллеги рассматривали случай действия силы чёрного тела на частицы пыли, температура которых достигала 100 Кельвинов (около минус 173 градусов по Цельсию). Они доказали, что эта сила притяжения будет намного больше, чем гравитационное притяжение этих самых частиц пыли. Однако, если рассматривать звезду, температура которой составляет 6000 Кельвинов (5727 градусов по Цельсию), то её гравитация будет мощнее силы чёрного тела. Здесь также фигурирует фактор массы, о котором мы говорили чуть выше.

Исследователи говорят, что их работа поможет астрофизикам в изучении взаимодействий межзвёздного газа и космической пыли, а также многих других явлений. Астрофизики в некоторых случаях ломают голову, не понимая, как образуются те или иные планетные системы из облаков пыли и газа, обращающихся вокруг светил.

Также эти данные можно будет использовать для проведения экспериментов с горячими микроструктурированными поверхностями в вакуумных камерах.

Правда, авторы исследования предупредили о предстоящих трудностях: условия, необходимые для возникновения силы чёрного тела, будет очень сложно воспроизвести в лаборатории, а если она и появится, то будет крайне слабой.

“Сила чёрного тела способна побить гравитацию лишь в случае с маленькими частицами, такими как космические пылинки. Несмотря на размер (а они меньше микрометра в диаметре), частицы пыли играют очень важную роль в формировании планет и звёзд, а также в других астрохимических процессах. У учёных есть масса открытых вопросов, касающихся их взаимодействия с окружающим газообразным водородом. Сегодня мы изучаем, как это добавочная сила влияет на динамику атомов и пыли”, — поведал о планах своих коллег Зонлайтнер.

Источник

Физики впервые экспериментально измерили силу притяжения, которая действует на отдельные атомы цезия со стороны черного тела. Эта сила оказалась в несколько раз больше гравитационной силы и силы давления электромагнитного излучения, пишут авторы работы, опубликованной в Nature Physics.

Чтобы проверить этот эффект количественно, группа физиков из США, Великобритании и Австрии под руководством Хольгера Мюллера (Holger Müller) из Калифорнийского университета в Беркли экспериментально измерила силу притяжения, которая действует на движущийся атом цезия со стороны вольфрамового цилиндра сантиметрового размера. С помощью лазера атомы цезия охлаждали до температуры 300 нанокельвинов и запускали их в сторону нагретого вольфрамового цилиндра. Температуру цилиндра авторы исследования меняли в диапазоне от комнатной температуры до 170 градусов Цельсия. Движение атома цезия регулировалось с помощью последовательности лазерных импульсов разной фазы, разделенных интервалами в 65 миллисекунд. Атом цезия в такой системе ведет себя как волна и вся система работает как атомный интерферометр Маха — Цендера, который позволяет с помощью определения фазового сдвига с высокой точностью измерить действующую на атом силу.

Оказалось, что тепловое излучение со стороны цилиндра действительно приводит к притяжению атомов. Величина силы притяжения (она соответствует ускорению порядка одного микрона на квадратную секунду) как минимум в 10 раз превосходит силу гравитационного притяжения и силу давления теплового излучения во всем исследованном диапазоне температур. Кроме того, ученые установили, что сила пропорциональна четвертой степени температуры цилиндра, что полностью соответствует теоретическим оценкам.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Solve : *
23 − 11 =